Cooperative p16 and p21 action protects female astrocytes from transformation
نویسندگان
چکیده
Mechanisms underlying sex differences in cancer incidence are not defined but likely involve dimorphism (s) in tumor suppressor function at the cellular and organismal levels. As an example, sexual dimorphism in retinoblastoma protein (Rb) activity was shown to block transformation of female, but not male, murine astrocytes in which neurofibromin and p53 function was abrogated (GBM astrocytes). Correlated sex differences in gene expression in the murine GBM astrocytes were found to be highly concordant with sex differences in gene expression in male and female GBM patients, including in the expression of components of the Rb and p53 pathways. To define the basis of this phenomenon, we examined the functions of the cyclin dependent kinase (CDK) inhibitors, p16, p21 and p27 in murine GBM astrocytes under conditions that promote Rb-dependent growth arrest. We found that upon serum deprivation or etoposide-induced DNA damage, female, but not male GBM astrocytes, respond with increased p16 and p21 activity, and cell cycle arrest. In contrast, male GBM astrocytes continue to proliferate, accumulate chromosomal aberrations, exhibit enhanced clonogenic cell activity and in vivo tumorigenesis; all manifestations of broad sex differences in cell cycle regulation and DNA repair. Differences in tumorigenesis disappeared when female GBM astrocytes are also rendered null for p16 and p21. These data elucidate mechanisms underlying sex differences in cancer incidence and demonstrate sex-specific effects of cytotoxic and targeted therapeutics. This has critical implications for lab and clinical research.
منابع مشابه
p16(INK4a) protects against dysfunctional telomere-induced ATR-dependent DNA damage responses.
Dysfunctional telomeres limit cellular proliferative capacity by activating the p53-p21- and p16(INK4a)-Rb-dependent DNA damage responses (DDRs). The p16(INK4a) tumor suppressor accumulates in aging tissues, is a biomarker for cellular senescence, and limits stem cell function in vivo. While the activation of a p53-dependent DDR by dysfunctional telomeres has been well documented in human cells...
متن کاملGenetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas.
PURPOSE Oncogenic BRAF/Ras or NF1 loss can potentially trigger oncogene-induced senescence (OIS) through activation of the mitogen-activated protein kinase (MAPK) pathway. Somatic genetic abnormalities affecting this pathway occur in the majority of pilocytic astrocytomas (PA), the most prevalent brain neoplasm in children. We investigated whether OIS is induced in PA. EXPERIMENTAL DESIGN We ...
متن کاملHuman Cancer Biology Genetic Aberrations Leading to MAPK Pathway Activation Mediate Oncogene-Induced Senescence in Sporadic Pilocytic Astrocytomas
Purpose: Oncogenic BRAF/Ras or NF1 loss can potentially trigger oncogene-induced senescence (OIS) through activation of the mitogen-activated protein kinase (MAPK) pathway. Somatic genetic abnormalities affecting this pathway occur in the majority of pilocytic astrocytomas (PA), the most prevalent brain neoplasm in children. We investigated whether OIS is induced in PA. Experimental Design: We ...
متن کاملPilocytic Astrocytomas Mediate Oncogene-Induced Senescence in Sporadic Genetic Aberrations Leading to MAPK Pathway Activation
Purpose: Oncogenic BRAF/Ras or NF1 loss can potentially trigger oncogene-induced senescence (OIS) through activation of the mitogen-activated protein kinase (MAPK) pathway. Somatic genetic abnormalities affecting this pathway occur in the majority of pilocytic astrocytomas (PA), the most prevalent brain neoplasm in children. We investigated whether OIS is induced in PA. Experimental Design: We ...
متن کاملDifferent combinations of genetic/epigenetic alterations inactivate the p53 and pRb pathways in invasive human bladder cancers.
Inactivation of both the pRb (pRb-cyclin D1/cyclin-dependent kinase 4/6-p16) and p53 (p53-p21(WAF1)-p14(ARF)) pathways is thought to be essential for immortalization in vitro and malignant transformation in vivo. We identified different combinations of pRb and p53 pathway alterations in 12 invasive transitional cell carcinomas (TCCs) and addressed the functional significance of the different co...
متن کامل